11. Euler's Method - a numerical solution for Differential Equations (2024)

Why numerical solutions?

For many of the differential equations we need to solve in the real world, there is no "nice" algebraic solution. That is, we can't solve it using the techniques we have met in this chapter (separation of variables, integrable combinations, or using an integrating factor), or other similar means.

As a result, we need to resort to using numerical methods for solving such DEs. The concept is similar to the numerical approaches we saw in an earlier integration chapter (Trapezoidal Rule, Simpson's Rule and Riemann Sums).

Even if we can solve some differential equations algebraically, the solutions may be quite complicated and so are not very useful. In such cases, a numerical approach gives us a good approximate solution.

The General Initial Value Problem

We are trying to solve problems that are presented in the following way:

`dy/dx=f(x,y)`; and

`y(a)` (the inital value) is known,

where `f(x,y)` is some function of the variables `x`, and `y` that are involved in the problem.

Examples of Initial Value Problems

(a) `dy/dx=6-2y/x`

`y(3)=1`

(b) `dy/dx=(y ln y)/x`

`y(2)=e`

(c) `dy/dx=(50x^2-10y)/3`

`y(0)=0`

Note that the right hand side is a function of `x` and `y` in each case.

Let's now see how to solve such problems using a numerical approach.

Euler's Method

Euler's Method assumes our solution is written in the form of a Taylor's Series.

That is, we'll have a function of the form:

`y(x+h)` `~~y(x)+h y'(x)+(h^2y''(x))/(2!)` `+(h^3y'''(x))/(3!)` `+(h^4y^("iv")(x))/(4!)` `+...`

This gives us a reasonably good approximation if we take plenty of terms, and if the value of `h` is reasonably small.

For Euler's Method, we just take the first 2 terms only.

`y(x+h)` `~~y(x)+h y'(x)`

The last term is just `h` times our `dy/dx` expression, so we can write Euler's Method as follows:

`y(x+h)` `~~y(x)+h f(x,y)`

How do we use this formula?

We start with some known value for `y`, which we could call `y_0`. It has this value when `x=x_0`. (We make use of the initial value `(x_0,y_0)`.)

The result of using this formula is the value for `y`, one `h` step to the right of the current value. Let's call it `y_1`. So we have:

`y_1` `~~y_0+h f(x_0,y_0)`

where

`y_1` is the next estimated solution value;

`y_0` is the current value;

`h` is the interval between steps; and

`f(x_0,y_0)` is the value of the derivative at the starting point, `(x_0,y_0)`.

Next value: To get the next value `y_2`, we would use the value we just found for `y_1` as follows:

`y_2` `~~y_1+h f(x_1,y_1)`

where

`y_2` is the next estimated solution value;

`y_1` is the current value;

`h` is the interval between steps;

`x_1 = x_0+h`; and

`f(x_1,y_1)` is the value of the derivative at the current `(x_1,y_1)` point.

We continue this process for as many steps as required.

What's going on?

The right hand side of the formula above means, "start at the known `y` value, then move one step `h` units to the right in the direction of the slope at that point,which is `dy/dx = f(x,y)`. We will arrive at a good approximation to the curve's y-value at that new point."

We'll do this for each of the sub-points, `h` apart, from some starting value `x=a` to some finishing value, `x=b`, as shown in the graph below.

11. Euler's Method - a numerical solution for Differential Equations (1)

Let's see how it works with an example.

Example: Euler's Method

Let's solve example (b) from above. We had the initial value problem:

`dy/dx=(y ln y)/x`

`y(2)=e`

Step 1

We'll start at the point `(x_0,y_0)=(2,e)` and use step size of `h=0.1` and proceed for 10 steps. That is, we'll approximate the solution from `t=2` to `t=3` for our differential equation. We'll finish with a set of points that represent the solution, numerically.

We already know the first value, when `x_0=2`, which is `y_0=e` (the initial value).

We now calculate the value of the derivative at this initial point. (This tells us the direction to move.)

`dy/dx = f(2,e)` `=(e ln e)/2` ` = e/2~~1.3591409`

This means the slope of the line from `t=2` to `t=2.1` is approximately `1.3591409`.

Step 2

Now, for the second step, (since `h=0.1`, the next point is `x+h=2+0.1=2.1`), we substitute what we know into Euler's Method formula, and we have:

`y(x+h)` `~~y(x)+h f(x,y)`

`y_1 = y(2.1)` ` ~~ e + 0.1(e/2)` ` = 2.8541959`

This means the approximate value of the solution when `x=2.1` is `2.8540959`.

Let's see what we've done on a graph.

11. Euler's Method - a numerical solution for Differential Equations (2)

We'll need the new slope at this point, so we'll know where to head next.

`dy/dx = f(2.1,2.8541959)` `=(2.8541959 ln 2.8541959)/2.1` ` = 1.4254536`

This means the slope of the approximation line from `x=2.1` to `x=2.2` is `1.4254536`. So it's a little bit steeper than the first slope we found.

Step 3

Now we are trying to find the solution value when `x=2.2`. We substitute our known values:

`y(x+h)` `~~y(x)+h f(x,y)`

`y(2.2) ~~` ` 2.8540959 + 0.1(1.4254536)` ` = 2.99664126`

With this new value, our graph is now:

11. Euler's Method - a numerical solution for Differential Equations (3)

We'll need the new slope at this point, so we'll know where to head next.

`f(2.2,2.99664126)` `=(2.99664126 ln 2.99664126)/2.2` ` = 1.49490457`

This means the slope of the approximation line from `x=2.2` to `x=2.3` is `1.49490456`. So it's a little more steep than the first 2 slopes we found.

Step 4

Now we are trying to find the solution value when `x=2.3`. We substitute our known values:

`y(x+h)` `~~y(x)+h f(x,y)`

`y(2.3) ~~` ` 2.99664126 + 0.1(1.49490456)` ` = 3.1461317`

With this new value, our graph is now:

11. Euler's Method - a numerical solution for Differential Equations (4)

Subsequent Steps

We present all the values up to `x=3` in the following table.

Of course, most of the time we'll use computers to find these approximations. I used a spreadsheet to obtain the following values. Don't use your calculator for these problems - it's very tedious and prone to error. You could use an online calculator, or Google search.

`x``y``dy/dx`
2.0e = 2.7182818285(e ln e)/2 = 1.3591409142
2.1e+0.1(e/2) = 2.8541959199(2.8541959199 ln 2.8541959199)/2 = 1.4254536226
2.22.99674128211.4949999323
2.33.14624127541.5679341197
2.43.30303468731.6444180873
2.53.46747649611.7246216904
2.63.63993866511.8087230858
2.73.82081097371.8969091045
2.84.01050188411.9893756448
2.94.20943944862.08632809
3.04.4180722576

(There's no final `dy/dx` value because we don't need it. We've found all the required `y` values.)

Here is the graph of our estimated solution values from `x=2` to `x=3`.

11. Euler's Method - a numerical solution for Differential Equations (5)

How good is it?

This particular question actually is easy to solve algebraically, and we did it back in the Separation of Variables section. (It was Example 7.)

Our solution was `y = e^(x"/"2)`. In the next graph, we see the estimated values we got using Euler's Method (the dark-colored curve) and the graph of the real solution `y = e^(x"/"2)` in magenta (pinkish). We can see they are very close.

11. Euler's Method - a numerical solution for Differential Equations (6)

In this case, the solution graph is only slightly curved, so it's "easy" for Euler's Method to produce a fairly close result.

In fact, at `x=3` the actual solution is `y=4.4816890703`, and we obtained the approximation `y=4.4180722576`, so the error is only:

`(4.4816890703 - 4.4180722576)/4.4816890703` ` = 1.42%`.

Exercise

The following question cannot be solved using the algebraic techniques we learned earlier in this chapter, so the only way to solve it is numerically.

Solve using Euler's Method:

`dy/dx=sin(x+y)-e^x`

`y(0) = 4`

Use `h=0.1`

Answer

Step 1

We start at the initial value `(0,4)` and calculate the value of the derivative at this point. We have:

`dy/dx=sin(x+y)-e^x`

`=sin(0+4)-e^0`

`=-1.75680249531`

We substitute our starting point and the derivative we just found to obtain the next point along.

`y(x+h)~~y(x)+hf(x,y)`

`y(0.1)~~4+0.1(-1.75680249531)`

`~~3.82431975047`

Step 2

Now we need to calculate the value of the derivative at this new point `(0.1,3.82431975047)`. We have:

`dy/dx=sin(x+y)-e^x`

`=sin(0.1+3.82431975047)` `-e^0.1`

`=-1.8103864498`

Once again, we substitute our current point and the derivative we just found to obtain the next point along.

`y(x+h)~~y(x)+hf(x,y)`

`y(0.2)~~3.82431975047+` `0.1(-1.8103864498)`

`~~3.64328110549`

We proceed for the required number of steps and obtain these values:

`x``y``dy/dx`
04-1.7568024953
0.13.8243197505-1.8103864498
0.23.6432811055-1.8669109257
0.33.4565900129-1.926815173
0.43.2639084956-1.9907132334
0.53.0648371723-2.0594421065
0.62.8588929616-2.1341215746
0.72.6454808042-2.2162311734
0.82.4238576868-2.3077132045
0.92.1930863664-2.4111158431
11.9519747821

Here's the graph of this solution.

11. Euler's Method - a numerical solution for Differential Equations (7)

In the next section, we see a more sophisticated numerical solution method for differential equations, called the Runge-Kutta Method.


Need help solving a different Calculus problem? Try the Problem Solver.


Disclaimer: IntMath.com does not guarantee the accuracy of results. Problem Solver provided by Mathway.

11. Euler's Method - a numerical solution for Differential Equations (2024)

References

Top Articles
Green Bay Guide to Pickleball, Disc Golf, and Sailing | Discover Green Bay
Florida Lottery Powerball Double Play
This website is unavailable in your location. – WSB-TV Channel 2 - Atlanta
Craftsman M230 Lawn Mower Oil Change
Hotels Near 500 W Sunshine St Springfield Mo 65807
Flights to Miami (MIA)
Meg 2: The Trench Showtimes Near Phoenix Theatres Laurel Park
Sunday World Northern Ireland
Devourer Of Gods Resprite
Mawal Gameroom Download
Connexus Outage Map
2024 Non-Homestead Millage - Clarkston Community Schools
Kvta Ventura News
Grab this ice cream maker while it's discounted in Walmart's sale | Digital Trends
Destiny 2 Salvage Activity (How to Complete, Rewards & Mission)
Classic | Cyclone RakeAmerica's #1 Lawn and Leaf Vacuum
Www Craigslist Milwaukee Wi
The Tower and Major Arcana Tarot Combinations: What They Mean - Eclectic Witchcraft
Craigslist Maryland Trucks - By Owner
Apartments / Housing For Rent near Lake Placid, FL - craigslist
Walmart Pharmacy Near Me Open
Znamy dalsze plany Magdaleny Fręch. Nie będzie nawet chwili przerwy
Marilyn Seipt Obituary
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
Skidware Project Mugetsu
Cvs Sport Physicals
Current Students - Pace University Online
Myaci Benefits Albertsons
Martins Point Patient Portal
Die wichtigsten E-Nummern
Diana Lolalytics
Kips Sunshine Kwik Lube
New Gold Lee
Directions To 401 East Chestnut Street Louisville Kentucky
Tds Wifi Outage
How are you feeling? Vocabulary & expressions to answer this common question!
Eastern New Mexico News Obituaries
D-Day: Learn about the D-Day Invasion
Hometown Pizza Sheridan Menu
Man Stuff Idaho
18006548818
Citibank Branch Locations In North Carolina
4k Movie, Streaming, Blu-Ray Disc, and Home Theater Product Reviews & News
Www Pig11 Net
17 of the best things to do in Bozeman, Montana
Campaign Blacksmith Bench
Convert Celsius to Kelvin
Lake County Fl Trash Pickup Schedule
Obituary Roger Schaefer Update 2020
Cataz.net Android Movies Apk
Salem witch trials - Hysteria, Accusations, Executions
Latest Posts
Article information

Author: Moshe Kshlerin

Last Updated:

Views: 6298

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Moshe Kshlerin

Birthday: 1994-01-25

Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

Phone: +2424755286529

Job: District Education Designer

Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.